Surface Oxide—Support Interactions in the Molecular Design of Supported Metal Oxide Selective Oxidation Catalysts

نویسندگان

  • Goutam Deo
  • Israel E. Wachs
چکیده

A series of metal oxides were deposited on the surface of different oxide supports to study the surface oxide support interactions. The dehydrated Raman spectra of the supported metal oxide catalysts reveal the presence and structure of the supported metal oxide phases. The same surface metal oxide species were found on the different oxide supports for each of the supported metal oxide systems. The reactivity of the surface metal oxide species, however, depends on the specific oxide support (TiO 2~ZrO 2>Nb 2O 5>Al 2O 3~SiO 2). For a given oxide support, the reactivity depends on the specific surface metal oxide species (e.g. VOx > MoOy). The redox activation energy for a l l the surface metal oxide phases l ie in the range of 18-22 kcal/mole. The similar activation energies suggests that the number of active sites and/or the activity per site is responsible for the difference in reactivity. The redox TON for the methanol oxidation reaction correlates with the reduction temperature during TPR experiments, which suggests that the bridging M-O-Support bond controls the activity during redox reactions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Catalytic Oxidation of Carbon Monoxide by Cobalt Oxide Catalysts Supported on Oxidized-MWCNT

Cobalt oxide catalysts supported on oxidized multi-walled carbon nanotubes (MWCNT) for the low-temperature catalytic oxidation of carbon monoxide were prepared by an impregnation-ultrasound method. These catalysts were characterized by N2 adsorption/desorption, TEM, XRD, Raman, and H2-TPR methods. The XRD and Raman results indicated that the phase of the synthesized cobalt...

متن کامل

Molecular Design of Supported Metal Oxide Catalysts

This study demonstrates that molecular design of supported metal oxide catalysts is possible from molecular level information obtained from combined Raman spectroscopy and the methanol oxidation reaction. The important factors that influence the molecular design of the supported metal oxide catalysts are the specific oxide support (factor of -10,) and the specific sur-face metal oxide (factor o...

متن کامل

Tantalum oxide-supported metal oxide (Re2O7, CrO3, MoO3, WO3, V2O5, and Nb2O5) catalysts: synthesis, Raman characterization and chemically probed by methanol oxidation

The molecular structures and reactivity of tantalum oxide-supported metal oxide (V2O5, Nb2O5, CrO3, MoO3, WO3, and Re2O7) catalysts were determined by Raman spectroscopy and the methanol oxidation chemical probe reaction, respectively. The metal oxides form a twodimensional surface metal oxide overlayer on the tantalum oxide support. Under ambient conditions, the hydrated surface metal oxide sp...

متن کامل

Molecular structure–reactivity relationships for the oxidation of sulfur dioxide over supported metal oxide catalysts

The catalytic oxidation of sulfur dioxide to sulfur trioxide over several binary (MxOy/TiO2) and ternary (V2O5/MXOY/TiO2) supported metal oxide catalysts was systematically investigated. The supported metal oxide components were essentially 100% dispersed as surface metal oxide species, as confirmed by Raman spectroscopy characterization. The sulfur dioxide oxidation turnover frequencies of the...

متن کامل

Synthesis, Characterization and Catalytic Performance in the Selective Oxidation of Alcohols by Metallophthalocyanines Supported on Zinc Oxide Nanoparticles

Unsubstituted phthalocyanines of Co, Fe and Mn supported on zinc oxide nanoparticles were prepared and were well characterized with X-ray diffraction and scanning electron microscopy. The oxidation of alcohols with tert-butylhydroperoxide, in the presence of metallophthalocyanines supported on zinc oxide nanoparticles was investigated. These MPc/ZnO nanocomposites were effective catalysts for t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009